Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
FROM(mark(X)) → FROM(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
2ND(mark(X)) → 2ND(X)
PROPER(head(X)) → PROPER(X)
HEAD(mark(X)) → HEAD(X)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
2ND(ok(X)) → 2ND(X)
PROPER(2nd(X)) → PROPER(X)
ACTIVE(2nd(cons(X, XS))) → HEAD(XS)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
PROPER(from(X)) → FROM(proper(X))
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X2)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
PROPER(s(X)) → S(proper(X))
ACTIVE(take(s(N), cons(X, XS))) → TAKE(N, XS)
ACTIVE(2nd(X)) → 2ND(active(X))
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
FROM(ok(X)) → FROM(X)
ACTIVE(from(X)) → FROM(s(X))
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
TOP(mark(X)) → PROPER(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
TOP(ok(X)) → ACTIVE(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
SEL(X1, mark(X2)) → SEL(X1, X2)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
ACTIVE(from(X)) → ACTIVE(X)
TOP(ok(X)) → TOP(active(X))
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
S(mark(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(take(s(N), cons(X, XS))) → CONS(X, take(N, XS))
PROPER(head(X)) → HEAD(proper(X))
PROPER(2nd(X)) → 2ND(proper(X))
ACTIVE(2nd(X)) → ACTIVE(X)
ACTIVE(from(X)) → S(X)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X1)
ACTIVE(head(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
HEAD(ok(X)) → HEAD(X)
ACTIVE(sel(s(N), cons(X, XS))) → SEL(N, XS)
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
FROM(mark(X)) → FROM(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
2ND(mark(X)) → 2ND(X)
PROPER(head(X)) → PROPER(X)
HEAD(mark(X)) → HEAD(X)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
2ND(ok(X)) → 2ND(X)
PROPER(2nd(X)) → PROPER(X)
ACTIVE(2nd(cons(X, XS))) → HEAD(XS)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
PROPER(from(X)) → FROM(proper(X))
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X2)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
PROPER(s(X)) → S(proper(X))
ACTIVE(take(s(N), cons(X, XS))) → TAKE(N, XS)
ACTIVE(2nd(X)) → 2ND(active(X))
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
FROM(ok(X)) → FROM(X)
ACTIVE(from(X)) → FROM(s(X))
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
TOP(mark(X)) → PROPER(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
TOP(ok(X)) → ACTIVE(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
SEL(X1, mark(X2)) → SEL(X1, X2)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
ACTIVE(from(X)) → ACTIVE(X)
TOP(ok(X)) → TOP(active(X))
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
S(mark(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(take(s(N), cons(X, XS))) → CONS(X, take(N, XS))
PROPER(head(X)) → HEAD(proper(X))
PROPER(2nd(X)) → 2ND(proper(X))
ACTIVE(2nd(X)) → ACTIVE(X)
ACTIVE(from(X)) → S(X)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X1)
ACTIVE(head(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
HEAD(ok(X)) → HEAD(X)
ACTIVE(sel(s(N), cons(X, XS))) → SEL(N, XS)
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 10 SCCs with 25 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

2ND(ok(X)) → 2ND(X)
2ND(mark(X)) → 2ND(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

2ND(ok(X)) → 2ND(X)
2ND(mark(X)) → 2ND(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(take(X1, X2)) → PROPER(X1)
PROPER(2nd(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(2nd(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(2nd(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(2nd(X)) → ACTIVE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(2nd(x1)) = x1   
POL(TOP(x1)) = 2·x1   
POL(active(x1)) = 2·x1   
POL(cons(x1, x2)) = x1 + x2   
POL(from(x1)) = x1   
POL(head(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = 2·x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(sel(x1, x2)) = 2·x1 + x2   
POL(take(x1, x2)) = 2·x1 + 2·x2   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(mark(X)) → TOP(proper(X)) at position [0] we obtained the following new rules:

TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
QDP
                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(X)) → TOP(active(X))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(ok(X)) → TOP(active(X)) at position [0] we obtained the following new rules:

TOP(ok(2nd(cons(x0, x1)))) → TOP(mark(head(x1)))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(take(0, x0))) → TOP(mark(nil))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(sel(0, cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
QDP
                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(2nd(cons(x0, x1)))) → TOP(mark(head(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(take(0, x0))) → TOP(mark(nil))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(sel(0, cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
QDP
                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(2nd(cons(x0, x1)))) → TOP(mark(head(x1)))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(sel(0, cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(sel(0, cons(x0, x1)))) → TOP(mark(x0))
The remaining pairs can at least be oriented weakly.

TOP(ok(2nd(cons(x0, x1)))) → TOP(mark(head(x1)))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(2nd(x1)) = x1   
POL(TOP(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(from(x1)) = x1   
POL(head(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(sel(x1, x2)) = 1 + x2   
POL(take(x1, x2)) = x2   

The following usable rules [17] were oriented:

active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
2nd(ok(X)) → ok(2nd(X))
2nd(mark(X)) → mark(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
active(sel(X1, X2)) → sel(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(2nd(X)) → 2nd(active(X))
active(head(X)) → head(active(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(2nd(cons(x0, x1)))) → TOP(mark(head(x1)))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(2nd(cons(x0, x1)))) → TOP(mark(head(x1)))
The remaining pairs can at least be oriented weakly.

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(2nd(x1)) = 1 + x1   
POL(TOP(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(from(x1)) = x1   
POL(head(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(sel(x1, x2)) = x2   
POL(take(x1, x2)) = x2   

The following usable rules [17] were oriented:

active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
2nd(ok(X)) → ok(2nd(X))
2nd(mark(X)) → mark(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
active(sel(X1, X2)) → sel(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(2nd(X)) → 2nd(active(X))
active(head(X)) → head(active(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
The remaining pairs can at least be oriented weakly.

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(2nd(x1)) = 1 + x1   
POL(TOP(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(from(x1)) = x1   
POL(head(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(sel(x1, x2)) = x2   
POL(take(x1, x2)) = x2   

The following usable rules [17] were oriented:

active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
2nd(ok(X)) → ok(2nd(X))
2nd(mark(X)) → mark(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
active(sel(X1, X2)) → sel(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(2nd(X)) → 2nd(active(X))
active(head(X)) → head(active(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
QDP
                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(cons(x1, take(x0, x2))))
The remaining pairs can at least be oriented weakly.

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(2nd(x1)) = 0   
POL(TOP(x1)) = x1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 0   
POL(head(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 0   
POL(sel(x1, x2)) = 1   
POL(take(x1, x2)) = 1   

The following usable rules [17] were oriented:

head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
2nd(ok(X)) → ok(2nd(X))
2nd(mark(X)) → mark(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
QDP
                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
The remaining pairs can at least be oriented weakly.

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( sel(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( from(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( head(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( mark(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( ok(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( take(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( 0 ) =
/0\
\0/

M( active(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( cons(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( 2nd(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( s(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( proper(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( nil ) =
/0\
\0/

Tuple symbols:
M( TOP(x1) ) = 0+
[0,1]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
2nd(ok(X)) → ok(2nd(X))
2nd(mark(X)) → mark(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesReductionPairsProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(2nd(x0))) → TOP(2nd(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(sel(s(x0), cons(x1, x2)))) → TOP(mark(sel(x0, x2)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(2nd(x0))) → TOP(2nd(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.